Mathematics, Problem 2

This problem is devoted to the construction of certain subgroups of the group $\mathrm{SL}_{2}(\mathbb{R})$ of 2×2 matrices with coefficients in \mathbb{R} and determinant 1 , and of the group $\mathrm{PSL}_{2}(\mathbb{R})$ that we will define below.

We recall that if K is a group, the subgroup generated by elements $x_{1}, \ldots, x_{k} \in K$ is the smallest subgroup of K containing x_{1}, \ldots, x_{k}.

Let G be a group with neutral element e, and let H and H^{\prime} be two subgroups of G. We say that G is the free product of H and H^{\prime} if the following holds :

- G is generated by the elements of H and H^{\prime}.
- Let n be a positive integer, and let g_{1}, \ldots, g_{n} be n elements of $H \cup H^{\prime}$, all different from e. Assume that for all $i \in\{1, \ldots, n-1\}$, either ($g_{i} \in H$ and $g_{i+1} \in H^{\prime}$) or $\left(g_{i} \in H^{\prime}\right.$ and $\left.g_{i+1} \in H\right)$. Then

$$
g_{1} \ldots g_{n} \neq e
$$

If G is the free product of H and H^{\prime}, we will write $G=H * H^{\prime}$.

1. Let G be a group, and assume that G is the free product of its subgroups H and H^{\prime}.
(a) Show that $H \cap H^{\prime}=\{e\}$.
(b) Assume that neither H nor H^{\prime} is reduced to $\{e\}$. Show that G is not an abelian group.
(c) Let \widetilde{G} be a group. Let $f: H \rightarrow \widetilde{G}$ and $f^{\prime}: H^{\prime} \rightarrow \widetilde{G}$ be two group morphisms. Show that there exists a unique group morphism $\widetilde{f}: G \rightarrow G^{\prime}$ such that $\widetilde{f}_{\mid H}=f$ and $\widetilde{f}_{\mid H^{\prime}}=f^{\prime}$.
2. Let a, b be two real numbers. Let

$$
A=\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right) \text { and } \mathrm{B}=\left(\begin{array}{ll}
1 & 0 \\
b & 1
\end{array}\right)
$$

For any nonnegative integer i, choose non-zero integers n_{i} and m_{i}. Define by induction

$$
M_{0}=\mathrm{Id}, M_{2 i+1}=M_{2 i} A^{n_{i}} \text { and } M_{2 i+2}=M_{2 i+1} B^{m_{i}}
$$

If i is a nonnegative integer, let $c(2 i)$ be the coefficient of index $(1,1)$ in $M_{2 i}$, and let $c(2 i+1)$ be the coefficient of index $(1,2)$ in $M_{2 i+1}$, so that

$$
M_{2 i}=\left(\begin{array}{cc}
c(2 i) & * \\
* & *
\end{array}\right) \text { and } \mathrm{M}_{2 \mathrm{i}+1}=\left(\begin{array}{cc}
* & c(2 i+1) \\
* & *
\end{array}\right)
$$

Also let H be the subgroup of $\mathrm{SL}_{2}(\mathbb{R})$ generated by A and let H^{\prime} be the subgroup of $\mathrm{SL}_{2}(\mathbb{R})$ generated by B. Let G be the subgroup of $\mathrm{SL}_{2}(\mathbb{R})$ generated by A and B.
(a) Assume now that $a, b \geq 2$.
i. Show that $|c(n)| \geq n+1$ for all nonnegative n.
ii. Deduce that $G=H * H^{\prime}$.
iii. Show that G is a discrete group : for every $g \in G$, there exists an open subset U of $\mathrm{M}_{2}(\mathbb{R})$ such that $U \cap G=\{g\}$.
(b) Assume now that $a=b=1$. Do we still have $G=H * H^{\prime}$?
3. We now consider elements of $\mathrm{SL}_{2}(\mathbb{R})$ as functions from \mathbb{R}^{2} to itself. We keep the notations above, the groups G, H, H^{\prime} are defined in 2 .
(a) Show that there exist two disjoint nonempty subsets X and X^{\prime} of \mathbb{R}^{2} such that

- if $h \in H \backslash\{\mathrm{Id}\}$, then $h(X) \subset X^{\prime}$,
- if $h \in H^{\prime} \backslash\{\operatorname{Id}\}$, then $h\left(X^{\prime}\right) \subset X$.
(b) Let n be a positive integer, let h_{0}, \ldots, h_{n} be elements of $H \backslash\{\operatorname{Id}\}$ and let $h_{1}^{\prime}, \ldots, h_{n}^{\prime}$ be elements of $H^{\prime} \backslash\{\mathrm{Id}\}$. Using the preceding question, show that

$$
h_{0} h_{1}^{\prime} h_{1} \ldots h_{n}^{\prime} h_{n} \neq \mathrm{Id}
$$

(c) Without using the results of question 2, show again that $G=H * H^{\prime}$.
4. We introduce a new symbol ∞, and define $\overline{\mathbb{R}}$ as the union of \mathbb{R} and $\{\infty\}$. Let $\mathrm{PSL}_{2}(\mathbb{R})$ be the group of functions

$$
f: \overline{\mathbb{R}} \rightarrow \overline{\mathbb{R}}
$$

such that, $f(x)=\frac{a x+b}{c x+d}$ if $x \in \mathbb{R}$ and $c x+d \neq 0, f(x)=\infty$ if $c x+d=0, f(\infty)=\frac{a}{c}$ if $c \neq 0$ and $f(\infty)=\infty$ if $c=0$, where $(a, b, c, d) \in \mathbb{R}^{4}$ and $a d-b c=1$. The group law is given by composition of functions.
(a) Show that $\mathrm{PSL}_{2}(\mathbb{R})$ is indeed a group, and show that there exists a surjective morphism ρ : $\mathrm{SL}_{2}(\mathbb{R}) \rightarrow \mathrm{PSL}_{2}(\mathbb{R})$. What is its kernel?
(b) Prove that there exists only two elements S and T of $\mathrm{PSL}_{2}(\mathbb{R})$ such that

$$
S(x)=\frac{-1}{x} \text { and } T(x)=x+1
$$

for $x \in \mathbb{R} \backslash\{0\}$.
Let H be the subgroup of $\operatorname{PSL}_{2}(\mathbb{R})$ generated by S, and let H^{\prime} be the subgroup of $\operatorname{PSL}_{2}(\mathbb{R})$ generated by T. Let G be the subgroup of $\operatorname{PSL}_{2}(\mathbb{R})$ generated by S and T.
(c) Show that H and H^{\prime} are finite cyclic groups.
(d) Show that there exist two disjoint nonempty subsets X and X^{\prime} of $\overline{\mathbb{R}}$ such that

- if $h \in H \backslash\{\operatorname{Id}\}$, then $h(X) \subset X^{\prime}$,
- if $h \in H^{\prime} \backslash\{\operatorname{Id}\}$, then $h\left(X^{\prime}\right) \subset X$.
(e) Show that $G=H * H^{\prime}$.

5. We call $\mathrm{PSL}_{2}(\mathbb{Z})$ the subgroup of $\mathrm{PSL}_{2}(\mathbb{R})$ consisting of f such that $f(\mathbb{Z}) \subset \mathbb{Z}$.
(a) Show that $G=\mathrm{PSL}_{2}(\mathbb{Z})$.
(b) Let \tilde{S} and \tilde{T} be elements of $\mathrm{SL}_{2}(\mathbb{R})$ such that $\rho(\tilde{S})=S, \rho(\tilde{T})=T$ and denote by \tilde{H} the subgroup of $\mathrm{SL}_{2}(\mathbb{R})$ generated by \tilde{S} and \tilde{H}^{\prime} the subgroup generated by \tilde{T}. Also denote \tilde{G} the subgroup of $\mathrm{SL}_{2}(\mathbb{R})$ generated by \tilde{S} and \tilde{T}.
i. Show that $\tilde{G}=S L_{2}(\mathbb{Z})$.
ii. Prove that \tilde{G} is not the free product $\tilde{H} * \tilde{H}^{\prime}$.
