MATHEMATICS, PROBLEM 2

This problem is devoted to the construction of certain subgroups of the group $SL_2(\mathbb{R})$ of 2×2 matrices with coefficients in \mathbb{R} and determinant 1, and of the group $PSL_2(\mathbb{R})$ that we will define below.

We recall that if K is a group, the subgroup generated by elements $x_1, \ldots, x_k \in K$ is the smallest subgroup of K containing x_1, \ldots, x_k .

Let G be a group with neutral element e, and let H and H' be two subgroups of G. We say that G is the *free product* of H and H' if the following holds :

-G is generated by the elements of H and H'.

- Let n be a positive integer, and let g_1, \ldots, g_n be n elements of $H \cup H'$, all different from e. Assume that for all $i \in \{1, \ldots, n-1\}$, either $(g_i \in H \text{ and } g_{i+1} \in H')$ or $(g_i \in H' \text{ and } g_{i+1} \in H)$. Then

$$g_1 \ldots g_n \neq e.$$

If G is the *free product* of H and H', we will write G = H * H'.

- 1. Let G be a group, and assume that G is the free product of its subgroups H and H'.
 - (a) Show that $H \cap H' = \{e\}$.
 - (b) Assume that neither H nor H' is reduced to $\{e\}$. Show that G is not an abelian group.
 - (c) Let \widetilde{G} be a group. Let $f: H \to \widetilde{G}$ and $f': H' \to \widetilde{G}$ be two group morphisms. Show that there exists a *unique* group morphism $\widetilde{f}: G \to G'$ such that $\widetilde{f}_{|H} = f$ and $\widetilde{f}_{|H'} = f'$.
- 2. Let a, b be two real numbers. Let

$$A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} 1 & 0 \\ b & 1 \end{pmatrix}$$

For any nonnegative integer i, choose non-zero integers n_i and m_i . Define by induction

$$M_0 = \text{Id}, M_{2i+1} = M_{2i}A^{n_i} \text{ and } M_{2i+2} = M_{2i+1}B^{m_i}.$$

If i is a nonnegative integer, let c(2i) be the coefficient of index (1,1) in M_{2i} , and let c(2i+1) be the coefficient of index (1,2) in M_{2i+1} , so that

$$M_{2i} = \begin{pmatrix} c(2i) & * \\ * & * \end{pmatrix}$$
 and $M_{2i+1} = \begin{pmatrix} * & c(2i+1) \\ * & * \end{pmatrix}$.

Also let H be the subgroup of $SL_2(\mathbb{R})$ generated by A and let H' be the subgroup of $SL_2(\mathbb{R})$ generated by B. Let G be the subgroup of $SL_2(\mathbb{R})$ generated by A and B.

- (a) Assume now that $a, b \ge 2$.
 - i. Show that $|c(n)| \ge n+1$ for all nonnegative n.
 - ii. Deduce that G = H * H'.
 - iii. Show that G is a discrete group : for every $g \in G$, there exists an open subset U of $M_2(\mathbb{R})$ such that $U \cap G = \{g\}$.
- (b) Assume now that a = b = 1. Do we still have G = H * H'?
- 3. We now consider elements of $SL_2(\mathbb{R})$ as functions from \mathbb{R}^2 to itself. We keep the notations above, the groups G, H, H' are defined in 2.
 - (a) Show that there exist two disjoint nonempty subsets X and X' of \mathbb{R}^2 such that - if $h \in H \setminus \{\mathrm{Id}\}$, then $h(X) \subset X'$, - if $h \in H' \setminus \{\mathrm{Id}\}$, then $h(X') \subset X$.
 - (b) Let n be a positive integer, let h_0, \ldots, h_n be elements of $H \setminus \{\text{Id}\}$ and let h'_1, \ldots, h'_n be elements of $H' \setminus \{\text{Id}\}$. Using the preceding question, show that

$$h_0 h'_1 h_1 \dots h'_n h_n \neq \mathrm{Id}$$

(c) Without using the results of question 2, show again that G = H * H'.

4. We introduce a new symbol ∞ , and define $\overline{\mathbb{R}}$ as the union of \mathbb{R} and $\{\infty\}$. Let $PSL_2(\mathbb{R})$ be the group of functions

$$f:\mathbb{R}\to\mathbb{R}$$

such that , $f(x) = \frac{ax+b}{cx+d}$ if $x \in \mathbb{R}$ and $cx + d \neq 0$, $f(x) = \infty$ if cx + d = 0, $f(\infty) = \frac{a}{c}$ if $c \neq 0$ and $f(\infty) = \infty$ if c = 0, where $(a, b, c, d) \in \mathbb{R}^4$ and ad - bc = 1. The group law is given by composition of functions.

- (a) Show that $PSL_2(\mathbb{R})$ is indeed a group, and show that there exists a surjective morphism ρ : $SL_2(\mathbb{R}) \to PSL_2(\mathbb{R})$. What is its kernel?
- (b) Prove that there exists only two elements S and T of $PSL_2(\mathbb{R})$ such that

$$S(x) = \frac{-1}{x}$$
 and $T(x) = x + 1$

for $x \in \mathbb{R} \setminus \{0\}$.

Let H be the subgroup of $PSL_2(\mathbb{R})$ generated by S, and let H' be the subgroup of $PSL_2(\mathbb{R})$ generated by T. Let G be the subgroup of $PSL_2(\mathbb{R})$ generated by S and T.

- (c) Show that H and H' are finite cyclic groups.
- (d) Show that there exist two disjoint nonempty subsets X and X' of \mathbb{R} such that - if $h \in H \setminus {\mathrm{Id}}$, then $h(X) \subset X'$, - if $h \in H' \setminus {\mathrm{Id}}$, then $h(X') \subset X$.
- (e) Show that G = H * H'.
- 5. We call $\text{PSL}_2(\mathbb{Z})$ the subgroup of $\text{PSL}_2(\mathbb{R})$ consisting of f such that $f(\mathbb{Z}) \subset \mathbb{Z}$.
 - (a) Show that $G = PSL_2(\mathbb{Z})$.
 - (b) Let \tilde{S} and \tilde{T} be elements of $\mathrm{SL}_2(\mathbb{R})$ such that $\rho(\tilde{S}) = S$, $\rho(\tilde{T}) = T$ and denote by \tilde{H} the subgroup of $\mathrm{SL}_2(\mathbb{R})$ generated by \tilde{S} and \tilde{H}' the subgroup generated by \tilde{T} . Also denote \tilde{G} the subgroup of $\mathrm{SL}_2(\mathbb{R})$ generated by \tilde{S} and \tilde{T} .
 - i. Show that $\tilde{G} = SL_2(\mathbb{Z})$.
 - ii. Prove that \tilde{G} is *not* the free product $\tilde{H} * \tilde{H}'$.